
Personal History

A Coder Considers the
Waning Days of the Craft

Coding has always felt to me like an endlessly deep and rich domain. Now
I �nd myself wanting to write a eulogy for it.

By James Somers

November 13, 2023

https://www.newyorker.com/magazine/personal-history
https://www.newyorker.com/contributors/james-somers


I

Artificial intelligence still can’t beat a human when it comes to programming. But it’s only a matter of
time. Illustration by Dev Valladares

have always taken it for granted that, just as my parents made sure that I could

read and write, I would make sure that my kids could program computers. It is
among the newer arts but also among the most essential, and ever more so by the

Save this story



day, encompassing everything from �lmmaking to physics. Fluency with code

would round out my children’s literacy—and keep them employable. But as I write
this my wife is pregnant with our �rst child, due in about three weeks. I code

professionally, but, by the time that child can type, coding as a valuable skill might
have faded from the world.

I �rst began to believe this on a Friday morning this past summer, while working
on a small hobby project. A few months back, my friend Ben and I had resolved to

create a Times-style crossword puzzle entirely by computer. In 2018, we’d made a
Saturday puzzle with the help of software and were surprised by how little we

contributed—just applying our taste here and there. Now we would attempt to
build a crossword-making program that didn’t require a human touch.

When we’ve taken on projects like this in the past, they’ve had both a hardware
component and a software component, with Ben’s strengths running toward the

former. We once made a neon sign that would glow when the subway was
approaching the stop near our apartments. Ben bent the glass and wired up the

transformer’s circuit board. I wrote code to process the transit data. Ben has some
professional coding experience of his own, but it was brief, shallow, and now about

twenty years out of date; the serious coding was left to me. For the new crossword
project, though, Ben had introduced a third party. He’d signed up for a ChatGPT

Plus subscription and was using GPT-4 as a coding assistant.

Something strange started happening. Ben and I would talk about a bit of
software we wanted for the project. Then, a shockingly short time later, Ben would

deliver it himself. At one point, we wanted a command that would print a hundred
random lines from a dictionary �le. I thought about the problem for a few

minutes, and, when thinking failed, tried Googling. I made some false starts using

More on A.I.

Sign up for The New Yorker’s weekly Science & Technology newsletter.

https://www.newyorker.com/newsletter/science-technology
https://www.newyorker.com/newsletter/science-technology
https://www.newyorker.com/newsletter/science-technology
https://www.newyorker.com/newsletter/science-technology


what I could gather, and while I did my thing—programming—Ben told GPT-4

what he wanted and got code that ran perfectly.

Fine: commands like those are notoriously fussy, and everybody looks them up

anyway. It’s not real programming. A few days later, Ben talked about how it
would be nice to have an iPhone app to rate words from the dictionary. But he had

no idea what a pain it is to make an iPhone app. I’d tried a few times and never
got beyond something that half worked. I found Apple’s programming

environment forbidding. You had to learn not just a new language but a new
program for editing and running code; you had to learn a zoo of “U.I.

components” and all the complicated ways of stitching them together; and, �nally,
you had to �gure out how to package the app. The mountain of new things to

learn never seemed worth it. The next morning, I woke up to an app in my in-box
that did exactly what Ben had said he wanted. It worked perfectly, and even had a

cute design. Ben said that he’d made it in a few hours. GPT-4 had done most of
the heavy lifting.

By now, most people have had experiences with A.I. Not everyone has been
impressed. Ben recently said, “I didn’t start really respecting it until I started

having it write code for me.” I suspect that non-programmers who are skeptical by
nature, and who have seen ChatGPT turn out wooden prose or bogus facts, are

still underestimating what’s happening.

Bodies of knowledge and skills that have traditionally taken lifetimes to master are

being swallowed at a gulp. Coding has always felt to me like an endlessly deep and
rich domain. Now I �nd myself wanting to write a eulogy for it. I keep thinking of

Lee Sedol. Sedol was one of the world’s best Go players, and a national hero in
South Korea, but is now best known for losing, in 2016, to a computer program

called AlphaGo. Sedol had walked into the competition believing that he would
easily defeat the A.I. By the end of the days-long match, he was proud of having

eked out a single game. As it became clear that he was going to lose, Sedol said, in
a press conference, “I want to apologize for being so powerless.” He retired three



M

years later. Sedol seemed weighed down by a question that has started to feel

familiar, and urgent: What will become of this thing I’ve given so much of my life
to?

y �rst enchantment with computers came when I was about six years old,
in Montreal in the early nineties, playing Mortal Kombat with my oldest

brother. He told me about some “fatalities”—gruesome, witty ways of killing your
opponent. Neither of us knew how to in�ict them. He dialled up an FTP server

(where �les were stored) in an MS-DOS terminal and typed obscure commands.
Soon, he had printed out a page of codes—instructions for every fatality in the

game. We went back to the basement and exploded each other’s heads.

I thought that my brother was a hacker. Like many programmers, I dreamed of

breaking into and controlling remote systems. The point wasn’t to cause mayhem
—it was to �nd hidden places and learn hidden things. “My crime is that of

curiosity,” goes “The Hacker’s Manifesto,” written in 1986 by Loyd Blankenship.
My favorite scene from the 1995 movie “Hackers” is when Dade Murphy, a

newcomer, proves himself at an underground club. Someone starts pulling a
rainbow of computer books out of a backpack, and Dade recognizes each one from

the cover: the green book on international Unix environments; the red one on
N.S.A.-trusted networks; the one with the pink-shirted guy on I.B.M. PCs. Dade

puts his expertise to use when he turns on the sprinkler system at school, and
helps right the ballast of an oil tanker—all by tap-tapping away at a keyboard. The

lesson was that knowledge is power.

But how do you actually learn to hack? My family had settled in New Jersey by

the time I was in �fth grade, and when I was in high school I went to the Borders
bookstore in the Short Hills mall and bought “Beginning Visual C++,” by Ivor

Horton. It ran to twelve hundred pages—my �rst grimoire. Like many tutorials, it
was easy at �rst and then, suddenly, it wasn’t. Medieval students called the

moment at which casual learners fail the pons asinorum, or “bridge of asses.” The



M

term was inspired by Proposition 5 of Euclid’s Elements I, the �rst truly difficult

idea in the book. Those who crossed the bridge would go on to master geometry;
those who didn’t would remain dabblers. Section 4.3 of “Beginning Visual C++,”

on “Dynamic Memory Allocation,” was my bridge of asses. I did not cross.

But neither did I drop the subject. I remember the moment things began to turn. I

was on a long-haul �ight, and I’d brought along a boxy black laptop and a CD-
��� with the Borland C++ compiler. A compiler translates code you write into

code that the machine can run; I had been struggling for days to get this one to
work. By convention, every coder’s �rst program does nothing but generate the

words “Hello, world.” When I tried to run my version, I just got angry error
messages. Whenever I �xed one problem, another cropped up. I had read the

“Harry Potter” books and felt as if I were in possession of a broom but had not yet
learned the incantation to make it �y. Knowing what might be possible if I did, I

kept at it with single-minded devotion. What I learned was that programming is
not really about knowledge or skill but simply about patience, or maybe obsession.

Programmers are people who can endure an endless parade of tedious obstacles.
Imagine explaining to a simpleton how to assemble furniture over the phone, with

no pictures, in a language you barely speak. Imagine, too, that the only response
you ever get is that you’ve suggested an absurdity and the whole thing has gone

awry. All the sweeter, then, when you manage to get something assembled. I have
a distinct memory of lying on my stomach in the airplane aisle, and then hitting

Enter one last time. I sat up. The computer, for once, had done what I’d told it to
do. The words “Hello, world” appeared above my cursor, now in the computer’s

own voice. It seemed as if an intelligence had woken up and introduced itself to
me.

ost of us never became the kind of hackers depicted in “Hackers.” To
“hack,” in the parlance of a programmer, is just to tinker—to express

ingenuity through code. I never formally studied programming; I just kept
messing around, making computers do helpful or delightful little things. In my



freshman year of college, I knew that I’d be on the road during the third round of

the 2006 Masters Tournament, when Tiger Woods was moving up the �eld, and I
wanted to know what was happening in real time. So I made a program that

scraped the leaderboard on pgatour.com and sent me a text message anytime he
birdied or bogeyed. Later, after reading “Ulysses” in an English class, I wrote a

program that pulled random sentences from the book, counted their syllables, and
assembled haikus—a more primitive regurgitation of language than you’d get from

a chatbot these days, but nonetheless capable, I thought, of real poetry:

I’ll �ay him alive
Uncertainly he waited
Heavy of the past

I began taking coding seriously. I offered to do programming for a friend’s startup.

The world of computing, I came to learn, is vast but organized almost geologically,
as if deposited in layers. From the Web browser down to the transistor, each sub-

area or system is built atop some other, older sub-area or system, the layers dense
but legible. The more one digs, the more one develops what the race-car driver

Jackie Stewart called “mechanical sympathy,” a sense for the machine’s strengths
and limits, of what one could make it do.

At my friend’s company, I felt my mechanical sympathy developing. In my
sophomore year, I was watching “Jeopardy!” with a friend when he suggested that I

make a playable version of the show. I thought about it for a few hours before
deciding, with much disappointment, that it was beyond me. But when the idea

came up again, in my junior year, I could see a way through it. I now had a better
sense of what one could do with the machine. I spent the next fourteen hours

building the game. Within weeks, playing “Jimbo Jeopardy!” had become a regular
activity among my friends. The experience was profound. I could understand why

people poured their lives into craft: there is nothing quite like watching someone
enjoy a thing you’ve made.



In the midst of all this, I had gone full “Paper Chase” and begun ignoring my

grades. I worked voraciously, just not on my coursework. One night, I took over a
half-dozen machines in a basement computer lab to run a program in parallel. I

laid printouts full of numbers across the �oor, thinking through a path�nding
algorithm. The cost was that I experienced for real that recurring nightmare in

which you show up for a �nal exam knowing nothing of the material. (Mine was
in Real Analysis, in the math department.) In 2009, during the most severe

�nancial crisis in decades, I graduated with a 2.9 G.P.A.

And yet I got my �rst full-time job easily. I had work experience as a programmer;

nobody asked about my grades. For the young coder, these were boom times.
Companies were getting into bidding wars over top programmers. Solicitations for

experienced programmers were so aggressive that they complained about “recruiter
spam.” The popularity of university computer-science programs was starting to

explode. (My degree was in economics.) Coding “boot camps” sprang up that
could credibly claim to turn beginners into high-salaried programmers in less than

a year. At one of my �rst job interviews, in my early twenties, the C.E.O. asked
how much I thought I deserved to get paid. I dared to name a number that faintly

embarrassed me. He drew up a contract on the spot, offering ten per cent more.
The skills of a “software engineer” were vaunted. At one company where I worked,

someone got in trouble for using HipChat, a predecessor to Slack, to ask one of
my colleagues a question. “Never HipChat an engineer directly,” he was told. We

were too important for that.
This was an era of near-zero interest rates and extraordinary tech-sector growth.

Certain norms were established. Companies like Google taught the industry that
coders were to have free espresso and catered hot food, world-class health care and

parental leave, on-site gyms and bike rooms, a casual dress code, and “twenty-per-
cent time,” meaning that they could devote one day a week to working on

whatever they pleased. Their skills were considered so crucial and delicate that a
kind of superstition developed around the work. For instance, it was considered

foolish to estimate how long a coding task might take, since at any moment the



programmer might turn over a rock and discover a tangle of bugs. Deadlines were

anathema. If the pressure to deliver ever got too intense, a coder needed only to
speak the word “burnout” to buy a few months.

From the beginning, I had the sense that there was something wrongheaded in all
this. Was what we did really so precious? How long could the boom last? In my

teens, I had done a little Web design, and, at the time, that work had been in
demand and highly esteemed. You could earn thousands of dollars for a project

that took a weekend. But along came tools like Squarespace, which allowed
pizzeria owners and freelance artists to make their own Web sites just by clicking

around. For professional coders, a tranche of high-paying, relatively low-effort
work disappeared.

The response from the programmer community to these developments was just,

Yeah, you have to keep levelling up your skills. Learn difficult, obscure things.
Software engineers, as a species, love automation. Inevitably, the best of them

build tools that make other kinds of work obsolete. This very instinct explained
why we were so well taken care of: code had immense leverage. One piece of

software could affect the work of millions of people. Naturally, this sometimes
displaced programmers themselves. We were to think of these advances as a tide



W

coming in, nipping at our bare feet. So long as we kept learning we would stay dry.

Sound advice—until there’s a tsunami.

hen we were �rst allowed to use A.I. chatbots at work, for programming

assistance, I studiously avoided them. I expected that my colleagues would,
too. But soon I started seeing the telltale colors of an A.I. chat session—the zebra

pattern of call-and-response—on programmers’ screens as I walked to my desk. A
common refrain was that these tools made you more productive; in some cases,

they helped you solve problems ten times faster.

I wasn’t sure I wanted that. I enjoy the act of programming and I like to feel

useful. The tools I’m familiar with, like the text editor I use to format and to
browse code, serve both ends. They enhance my practice of the craft—and, though

they allow me to deliver work faster, I still feel that I deserve the credit. But A.I.,
as it was being described, seemed different. It provided a lot of help. I worried that

it would rob me of both the joy of working on puzzles and the satisfaction of
being the one who solved them. I could be in�nitely productive, and all I’d have to

show for it would be the products themselves.

The actual work product of most programmers is rarely exciting. In fact, it tends

to be almost comically humdrum. A few months ago, I came home from the office
and told my wife about what a great day I’d had wrestling a particularly fun

problem. I was working on a program that generated a table, and someone had
wanted to add a header that spanned more than one column—something that the

custom layout engine we’d written didn’t support. The work was urgent: these
tables were being used in important documents, wanted by important people. So I

sequestered myself in a room for the better part of the afternoon. There were lots
of lovely sub-problems: How should I allow users of the layout engine to convey

that they want a column-spanning header? What should their code look like? And
there were �ddly details that, if ignored, would cause bugs. For instance, what if

one of the columns that the header was supposed to span got dropped because it



didn’t have any data? I knew it was a good day because I had to pull out pen and

pad—I was drawing out possible scenarios, checking and double-checking my
logic.

But taking a bird’s-eye view of what happened that day? A table got a new header.
It’s hard to imagine anything more mundane. For me, the pleasure was entirely in

the process, not the product. And what would become of the process if it required
nothing more than a three-minute ChatGPT session? Yes, our jobs as

programmers involve many things besides literally writing code, such as coaching
junior hires and designing systems at a high level. But coding has always been the

root of it. Throughout my career, I have been interviewed and selected precisely
for my ability to solve �ddly little programming puzzles. Suddenly, this ability was

less important.

I had gathered as much from Ben, who kept telling me about the spectacular

successes he’d been having with GPT-4. It turned out that it was not only good at
the �ddly stuff but also had the qualities of a senior engineer: from a deep well of

knowledge, it could suggest ways of approaching a problem. For one project, Ben
had wired a small speaker and a red L.E.D. light bulb into the frame of a portrait

of King Charles, the light standing in for the gem in his crown; the idea was that
when you entered a message on an accompanying Web site the speaker would play

a tune and the light would �ash out the message in Morse code. (This was a gift
for an eccentric British expat.) Programming the device to fetch new messages

eluded Ben; it seemed to require specialized knowledge not just of the
microcontroller he was using but of Firebase, the back-end server technology that

stored the messages. Ben asked me for advice, and I mumbled a few possibilities;
in truth, I wasn’t sure that what he wanted would be possible. Then he asked

GPT-4. It told Ben that Firebase had a capability that would make the project
much simpler. Here it was—and here was some code to use that would be

compatible with the microcontroller.



I

Afraid to use GPT-4 myself—and feeling somewhat unclean about the prospect

of paying OpenAI twenty dollars a month for it—I nonetheless started probing its
capabilities, via Ben. We’d sit down to work on our crossword project, and I’d say,

“Why don’t you try prompting it this way?” He’d offer me the keyboard. “No, you
drive,” I’d say. Together, we developed a sense of what the A.I. could do. Ben, who

had more experience with it than I did, seemed able to get more out of it in a
stroke. As he later put it, his own neural network had begun to align with GPT-

4’s. I would have said that he had achieved mechanical sympathy. Once, in a feat I
found particularly astonishing, he had the A.I. build him a Snake game, like the

one on old Nokia phones. But then, after a brief exchange with GPT-4, he got it
to modify the game so that when you lost it would show you how far you strayed

from the most efficient route. It took the bot about ten seconds to achieve this. It
was a task that, frankly, I was not sure I could do myself.

In chess, which for decades now has been dominated by A.I., a player’s only hope
is pairing up with a bot. Such half-human, half-A.I. teams, known as centaurs,

might still be able to beat the best humans and the best A.I. engines working
alone. Programming has not yet gone the way of chess. But the centaurs have

arrived. GPT-4 on its own is, for the moment, a worse programmer than I am.
Ben is much worse. But Ben plus GPT-4 is a dangerous thing.

t wasn’t long before I caved. I was making a little search tool at work and
wanted to highlight the parts of the user’s query that matched the results. But I

was splitting up the query by words in a way that made things much more
complicated. I found myself short on patience. I started thinking about GPT-4.

Perhaps instead of spending an afternoon programming I could spend some time
“prompting,” or having a conversation with an A.I.

In a 1978 essay titled “On the Foolishness of ‘Natural Language Programming,’ ”
the computer scientist Edsger W. Dijkstra argued that if you were to instruct

computers not in a specialized language like C++ or Python but in your native



tongue you’d be rejecting the very precision that made computers useful. Formal

programming languages, he wrote, are “an amazingly effective tool for ruling out
all sorts of nonsense that, when we use our native tongues, are almost impossible

to avoid.” Dijkstra’s argument became a truism in programming circles. When the
essay made the rounds on Reddit in 2014, a top commenter wrote, “I’m not sure

which of the following is scariest. Just how trivially obvious this idea is” or the fact
that “many still do not know it.”

When I �rst used GPT-4, I could see what Dijkstra was talking about. You can’t
just say to the A.I., “Solve my problem.” That day may come, but for now it is

more like an instrument you must learn to play. You have to specify what you want
carefully, as though talking to a beginner. In the search-highlighting problem, I

found myself asking GPT-4 to do too much at once, watching it fail, and then
starting over. Each time, my prompts became less ambitious. By the end of the

conversation, I wasn’t talking about search or highlighting; I had broken the
problem into speci�c, abstract, unambiguous sub-problems that, together, would

give me what I wanted.

Having found the A.I.’s level, I felt almost instantly that my working life had been

transformed. Everywhere I looked I could see GPT-4-size holes; I understood,
�nally, why the screens around the office were always �lled with chat sessions—

and how Ben had become so productive. I opened myself up to trying it more
often.

I returned to the crossword project. Our puzzle generator printed its output in an

ugly text format, with lines like "s""c""a""r""*""k""u""n""i""s""*"
"a""r""e""a". I wanted to turn output like that into a pretty Web page that
allowed me to explore the words in the grid, showing scoring information at a

glance. But I knew the task would be tricky: each letter had to be tagged with the
words it belonged to, both the across and the down. This was a detailed problem,

one that could easily consume the better part of an evening. With the baby on the
way, I was short on free evenings. So I began a conversation with GPT-4. Some



P

back-and-forth was required; at one point, I had to read a few lines of code myself

to understand what it was doing. But I did little of the kind of thinking I once
believed to be constitutive of coding. I didn’t think about numbers, patterns, or

loops; I didn’t use my mind to simulate the activity of the computer. As another
coder, Geoffrey Litt, wrote after a similar experience, “I never engaged my detailed

programmer brain.” So what did I do?

erhaps what pushed Lee Sedol to retire from the game of Go was the sense

that the game had been forever cheapened. When I got into programming, it
was because computers felt like a form of magic. The machine gave you powers

but required you to study its arcane secrets—to learn a spell language. This took a
particular cast of mind. I felt selected. I devoted myself to tedium, to careful

thinking, and to the accumulation of obscure knowledge. Then, one day, it became
possible to achieve many of the same ends without the thinking and without the

knowledge. Looked at in a certain light, this can make quite a lot of one’s working
life seem like a waste of time.

But whenever I think about Sedol I think about chess. After machines conquered
that game, some thirty years ago, the fear was that there would be no reason to

play it anymore. Yet chess has never been more popular—A.I. has enlivened the
game. A friend of mine picked it up recently. At all hours, he has access to an A.I.

coach that can feed him chess problems just at the edge of his ability and can tell
him, after he’s lost a game, exactly where he went wrong. Meanwhile, at the

highest levels, grandmasters study moves the computer proposes as if reading
tablets from the gods. Learning chess has never been easier; studying its deepest

secrets has never been more exciting.

Computing is not yet overcome. GPT-4 is impressive, but a layperson can’t wield

it the way a programmer can. I still feel secure in my profession. In fact, I feel
somewhat more secure than before. As software gets easier to make, it’ll

proliferate; programmers will be tasked with its design, its con�guration, and its



maintenance. And though I’ve always found the �ddly parts of programming the

most calming, and the most essential, I’m not especially good at them. I’ve failed
many classic coding interview tests of the kind you �nd at Big Tech companies.

The thing I’m relatively good at is knowing what’s worth building, what users like,
how to communicate both technically and humanely. A friend of mine has called

this A.I. moment “the revenge of the so-so programmer.” As coding per se begins
to matter less, maybe softer skills will shine.

That still leaves open the matter of what to teach my unborn child. I suspect that,
as my child comes of age, we will think of “the programmer” the way we now look

back on “the computer,” when that phrase referred to a person who did
calculations by hand. Programming by typing C++ or Python yourself might

eventually seem as ridiculous as issuing instructions in binary onto a punch card.
Dijkstra would be appalled, but getting computers to do precisely what you want

might become a matter of asking politely.

So maybe the thing to teach isn’t a skill but a spirit. I sometimes think of what I

might have been doing had I been born in a different time. The coders of the
agrarian days probably futzed with waterwheels and crop varietals; in the

Newtonian era, they might have been obsessed with glass, and dyes, and
timekeeping. I was reading an oral history of neural networks recently, and it

struck me how many of the people interviewed—people born in and around the
nineteen-thirties—had played with radios when they were little. Maybe the next

cohort will spend their late nights in the guts of the A.I.s their parents once
regarded as black boxes. I shouldn’t worry that the era of coding is winding down.

Hacking is forever. ♦

Published in the print edition of the November 20, 2023, issue, with the headline “Begin
End.”

More Science and Technology

https://www.newyorker.com/magazine/2023/11/20


Can we stop runaway A.I.?

Saving the climate will depend on blue-collar workers. Can we train enough of
them before time runs out?

There are ways of controlling A.I.—but �rst we need to stop mythologizing it.

A security camera for the entire planet.

What’s the point of reading writing by humans?

A heat shield for the most important ice on Earth.

The climate solutions we can’t live without.

Sign up for our daily newsletter to receive the best stories from The New Yorker.

James Somers is a writer and a programmer based in New York.

Weekly

Enjoy our �agship newsletter as a digest delivered once a week.

E-mail address

By signing up, you agree to our User Agreement and Privacy Policy & Cookie Statement. This site is
protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

E-mail address

Sign up

https://www.newyorker.com/science/annals-of-artificial-intelligence/can-we-stop-the-singularity
https://www.newyorker.com/news/dept-of-energy/the-great-electrician-shortage
https://www.newyorker.com/science/annals-of-artificial-intelligence/there-is-no-ai
https://www.newyorker.com/news/annals-of-climate-action/a-security-camera-for-the-planet
https://www.newyorker.com/news/our-columnists/whats-the-point-of-reading-writing-by-humans
https://www.newyorker.com/news/the-control-of-nature/a-heat-shield-for-the-most-important-ice-on-earth
https://www.newyorker.com/news/annals-of-a-warming-planet/the-climate-solutions-we-cant-live-without
https://www.newyorker.com/newsletter/daily?sourceCode=BottomStories
https://www.newyorker.com/contributors/james-somers
https://www.condenast.com/user-agreement
https://www.condenast.com/privacy-policy
https://policies.google.com/privacy
https://policies.google.com/terms


Read More

Under R�i�

The Longest, Least-Remembered Great American Novel
In “Miss MacIntosh, My Darling,” Marguerite Young held a mirror to the
country’s ambition, delusion, and insatiable quest for perfection.

By Ryan Ruby

The Weekend Essay

My Grandmother and the Canine Detective
How the Austrian police procedural “Inspector Rex” bridges gaps between
languages.

By Naaman Zhou

Persons of Interest

Victoria Canal Feels Seen
A rising star of sad-girl pop talks disability, public personae, and just going for it.

By Hugh Morris

https://www.newyorker.com/books/under-review/the-longest-least-remembered-great-american-novel#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/books/under-review/the-longest-least-remembered-great-american-novel#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/books/under-review/the-longest-least-remembered-great-american-novel#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/the-weekend-essay/my-grandmother-and-the-canine-detective#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/the-weekend-essay/my-grandmother-and-the-canine-detective#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/the-weekend-essay/my-grandmother-and-the-canine-detective#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/persons-of-interest/victoria-canal-feels-seen#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/persons-of-interest/victoria-canal-feels-seen#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/persons-of-interest/victoria-canal-feels-seen#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/books/under-review/the-longest-least-remembered-great-american-novel#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/the-weekend-essay/my-grandmother-and-the-canine-detective#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://www.newyorker.com/culture/persons-of-interest/victoria-canal-feels-seen#intcid=_the-new-yorker-bottom-recirc-v2_fe889e08-7392-4e09-bd48-945f67a4eb52_roberta-similarity1
https://adclick.g.doubleclick.net/pcs/click?xai=AKAOjsv7fs6ZOpnOnQh-k6B7Vo0WFbxyX8MSDBezeC1bq5qbDj0J8F1jgqRx3Drz8nKxAv5uavkaojXpKqcxe1IhrW-IOhdTKj2uLoR_zcQiAkOmyD3eJH4byc3HrsGD9-yzYKIdepR5t9Yfx_oAZiWdk436xWJczPZdcAA4qAX3lRXTkzrm0ViQ4fmH2vEI9qt1aO9qdnADHk9VlDqNTxOQND2FWkT_kXPBoKu9wy84SImhuQCaDwP3itTEA8WTYAoH7hjHGhn9kGJ8MV_0iGwEomeKebW3hWmMEOJExonsX5RM7qGSg6qMWGRUB1D4JvMHh4YZBNPHfsstMyYrJHy9_r0F6Bx0d7Rui02rqwbNagisdZ-DkZmnc9g&sai=AMfl-YSkUVVk5oLNjQqnmtsXADCqxr-ZvMbrMy3XiH7noeHNdW3G0_ZS4rnE1W_yIj_rGbfndaxzgjkaS9p0_rsOsecvoILlM6lykuxRt6doSZOO0s-0QJOHb0bk4sGSLE2_PKD9N7M403mzG-37oozInitGhFR7xkkiMfyqe-rtrXjTMfdVKLKefx6JotJzMdpEbiE3AfZPNeIF_BnubpsxmvCPbDLq5ywsm3Jm09UaYz-J&sig=Cg0ArKJSzDrHkkx-rg_VEAE&fbs_aeid=[gw_fbsaeid]&urlfix=1&adurl=https://www.gq.com/sponsored/story/welcome-to-motto-by-hilton-rotterdam-blaak-a-stylish-launchpad-to-a-vibrant-city


Cookies Settings


